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Abstract 
 
Segal’s theory is outlined briefly. It is based on space-time D. There are space-times L and F, which are 

on equal footing with D. The main idea of the DLF-approach is that each object of nature has not just D-
properties (that is, “conventional” ones) but L- and F-properties, too. The F-part of the theory is studied in 
more details. 
 

 

1. Introduction and the world D 
 
The importance of the Biological Field which is “a combination of different types of fields… of known and 

unknown origin…” has been stressed in [K-02] (p.237 and elsewhere). To try to understand those “unknown 
origins” we build a certain theoretical model, first. Otherwise, as someone said, “We do not have any idea 
how to detect those new fields, do not know what to measure”. The current article is dedicated to the DLF-
approach which is based on Segal’s chronometric theory (see more details in [Le-03] and/or in [KL-05]). 
Having in mind the topic of the Conference, it is worth mentioning that significant part of paragraph I.3 of [KL-
05] is dedicated to rigorous mathematical notion of energy. The DLF-theory forces to consider three types of 
energy instead of just one. 

The chronometric theory (see surveys [Le-93], [Le-95]) has been presented in dozens of articles many of 
which have been published in leading mathematical, physics, and astronomy journals. 

Here are some building blocks of the DLF-approach. Denote by M the Minkowski space-time (in its 
Hermitian realization, see Section 3 below, where the Caley map formula is given). Let D stand for the 
unitary group U(2). The image c(M) of the Caley map с (refer to [Se-76] or to [Le-95]) is a dense open subset 
in D. 

Let us view M as a vector group. It is commutative: each left translation is the respective right translation, 
too. The family {Cy} of subsets in M forms a bi-invariant cone field; each Cy = y + C, where C is a light cone 
at the origin of M. Due to the presence of the Caley map, there is the corresponding cone field on D, too. On 
the universal cover D˜ of D one can introduce future sets in a canonical way. These sets are determined by 
the above cone field and by the choice of orientation in time; they form the causal structure on D˜ (whereas 
D is acausal since it is compact). 

Let G denote the conformal group SU(2,2). Recall the well-known linear-fractional G-action on D: 
 

g(z) = (Az + B)(Cz + D)-1     (1.1) 
 

where an element g is determined by 2×2 blocks A, B, C, D. This action is canonically lifted to the G˜-action 
on D˜ (the latter action preserves the causal structure). Proofs of the above statements can be found in [Se-
76, PaSe-82a]. 
 

Theorem 1 ([Al-76, Se-76]). If a bijection f of D˜ preserves its causal structure then f is an element of the 
transformation group G˜, determined by the action (1.1). 

 
In other words, the geometry of such a space-time is determined by its causal structure – a 

fundamentally important property! 
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Vector fields 
 

X0 = L-10, X1 = L14 – L23, X2 = L24 – L31, X3 = L34 – L12 
 
form a left-invariant orthonormal basis on D = U(2), where fifteen vector fields Lij (index i is less than j, and 
they take on values -1, 0, 1, 2, 3, 4) are determined on D by the action (1.1). Let us keep the same symbols 
to denote respective vector fields on D~. Globally, D~ is R1 × S3, where S3 is represented by the group SU(2). 
A cosmological model based on D~ has been considered by many experts “to be an excellent model for the 
large-scale gravitational structure of the universe. It fell into disfavor only because of the belief, explicitly 
stated by Hubble, that there would be no redshift in it” ([Se-85, p.214]). Segal’s chronometric theory explains 
redshift by the excess of D-energy over M-energy. That is why “there is no reason not to use the Einstein 
Universe D˜ as a gravitational model, as originally proposed”. Also, see [DS-01]. 

In Chronometry, there is a conformal invariant R, interpreted as the radius of a three-dimensional 
(spherical) space. Irving Segal has put it for the (long wanted by Dirac and others) third fundamental 
constant – additionally to the speed of light and to the Planck’s constant. If (for mathematical convenience) 
one takes R=1, then the scalar curvature is 6. 

The conformally covariant wave operator is 
 

X0
2 – X1

2 – X2
2 – X3

2 + 1, 
 

as it is shown in [PaSe-82a]. 
Remark 1. In the General Relativity Theory (GRT), D~ is also known under the name of Einstein static 

universe (see [Kr-80, p.122]). The respective solution (of GRT Einstein equations) is interpreted as an ideal 
fluid. If not to assume R=1, then the scalar curvature is 6/(R2). Energy density and pressure both equal 
1/(R2). Energy conditions hold. See [Le-07] for proofs. 
 
 
2. The worlds L and F 

 
Topologically, L~ is R4. Its relatively compact form L (being a four-dimensional orbit in D) is determined by 

a basis of vector fields l1, l2, l3, l4  on U(2) where 
 

l1 = -(L-10 + L04 + L-11 + L14), 
 

l2 = (1/2)(L-12 + L24 + 2L30 + 2L31), 
 

l3 = (1/2)(L-13 + L34 + 2L02 + 2L12), 
 

l4 = (1/8)(-5L-10 - 3L-11 + 3L04 + 5L14 + 4L23). 
 

One can prove that they generate the oscillator Lie algebra. The expression for the invariant form (which 
determines the bi-invariant metric) follows from the formula for the respective wave operator (see below). 

The scalar curvature is now 0 (as shown in [Le-86b] where this world L~ has been studied separately; 
altogether the three worlds have been studied in [Le-86a]). 

Here is the expression for the conformally covariant wave operator: 
 

2l1l4 – (l2)2 - (l3)2. 
 

In terms of GRT, we now have an isotropic electromagnetic field determined by a covariantly constant 
light-like vector (see [Le-86b, p.123]).  Energy conditions hold. This space-time is a special case of plane 
waves. The latter have been discussed in dozens of publications. Of special interest in our context is an 
article [Pe-76] by R. Penrose, where he introduced a method for taking a continuous limit of any space-time 
to a plane wave. 

In [NaWi-93] a conformal field theory model is based on L. The model is an un-gauged Wess-Zumino-
Witten model. In [CaJa-92], [CaJa-93] the oscillator Lie algebra l is used to formulate string-inspired lineal 
gravity as a gauge theory. However, the last two publications are seriously flawed. Namely, the upper left 
corner h (see expression (36) from [CaJa-92] and formula (3.41) from [CaJa-93]) has to be an identity matrix, 
rather than a diagonal matrix with 1, -1, entries. No surprise that the authors could not believe in one of their 
own conclusions (see their p. 249 of [CaJa-93]). In [NaWi-93] (which refers to [CaJa-92], [CaJa-93]) the 
invariant form in question is introduced correctly: expression (6) on p.3751. 

 
The group L has been called an oscillator one. The L’s important property to admit a non-degenerate bi-

invariant metric has only been noticed in early 80s: [GuLe-84], [Le-85], [MeRe-85]. 

 



From the above discussion it is clear that the building blocks D, L are quite well understood, and their 
importance (as specific worlds of the GRT and otherwise) is accepted by the physics/mathematics 
community. As part of the DLF-approach, let us now consider the tachionic component F. 

F~ is R4, topologically. It is the universal cover of the Lie group U(1,1). Its relatively compact form F (being 
a four-dimensional orbit in D) is determined by an orthonormal basis of vector fields H0, H1, H2, H3 on U(2). 
Here H0 = L-10 – L12, H1 = – L-12 – L01, H2 = L02 – L-11, H3 = L34. These fields generate a u(1,1), a sub-algebra 
of su(2,2). The scalar curvature is negative 6, and 
 

(H0)2 - (H1)2 - (H2)2 - (H3)2 – 1 
 

is another conformally covariant wave operator. 
Remark 2. Treated as the solution of Einstein equations, it is interpreted as a tachionic fluid, [Kr-80, p.57]. 

In the expression for the corresponding bi-invariant metric, there is a parameter a related to a choice of an 
invariant form on the simple su(1,1)-sub-algebra of  u(1,1). The scalar curvature is now -6/a2. Energy density 
and pressure are both negative; -1/(a2). These statements have been proven in [Le-07]. The parameter a is a 
conformal invariant. Energy density and pressure both negative imply energy conditions violation, which is 
why the world F plays a special role. 

Here is what M. Davidson (an expert on tachyons) writes ([Da-01, p.1]): “Tachyons captured some 
interest in the physics community in the 1960s and 70s [1-7] (references from [Da-01] are not included into 
this short article; A.L.), but they have since fallen somewhat from fashion because direct experimental 
evidence has not been found to support their existence, and also because of concerns about causality [8]. 
Arguments have been made to counter the causality objections [9], and the issue remains in dispute. There 
are several reasons why tachyons are still of interest today, and in fact interest may be increasing. First, 
many string theories have tachyons occurring as some of the particles in the theory [10], although they are 
generally regarded as unphysical in those theories. There are also several recent papers that assert 
experimental evidence that some neutrinos are tachyons [11, 12]. There is a new and extensive re-analysis 
of tachyon dynamics [13]. There is much discussion in the physics literature in recent years of superluminal 
connections implied by quantum mechanics and by the evanescent wave phenomenon of light optics as well 
as quantum tunneling, all indirect evidence of non-locality in nature. These and other recent developments 
show that tachyons are still a timely subject for investigation.” 
 
 

3. Pseudo-Hermitian realization of the Minkowski world M 
 
Let us first recall the well-known Hermitian model for M (see [PaSe–82a] or [Le-95]). 
Each event (or an element of M) is represented by a two by two Hermitian matrix h. The totality of all 

skew-Hermitian matrices ih forms a Lie algebra u(2). A typical element (t,L,f) of the simply connected eleven-
dimensional (scaling included) Poincare group P˜ maps h into etLhL* + f: 
 

h  etLhL* + f      (3.1) 
 

In the above (3.1), t is a real number, L is a matrix from SL(2,C), f is a Hermitian matrix. It is a well-known 
action of P˜. 

The Caley map c =cD (which has been already mentioned in Section 1) is defined as follows: 
 

cD(h) = (1 + ih/2)(1 – ih/2)–1    (3.2) 
 

The image of this map is an open dense subset of U(2). The group P˜ acts on D=U(2), too. The Caley 
map intertwines respective actions (see Theorem 2 of [Le-07]). The possibility of the following pseudo-
Hermitian picture seems to have been unnoticed. 

Recall that a two by two matrix h (with complex entries allowed) is in u(1,1) iff h*s + sh = 0, where s is a 
two by two matrix diag{1,-1}. 

Theorem 2. There is a linear bijection Q of the Lie algebra u(2) onto u(1,1), and there is such a P˜-action 
on u(1,1), that one gets a commutative diagram (in other words, Q intertwines respective P˜-actions). 

Proof. Choose the bijection Q, which maps a Hermitian matrix into a pseudo-Hermitian matrix 

. The resulting Q is a bijection between two real four-dimensional subspaces in C

dc
ba

dib
ica

−
− 4. If a matrix L is 

from SL(2,C), then it maps a pseudo-Hermitian matrix h into A*L'B*hALTB: 
 

h  A*L'B*hALTB,     (3.3) 
 

 



where L' is a complex conjugate of L (not a transpose), A = diag{1,i}, B = diag{-i,-1}, LTis the transpose of L. 
Scaling and parallel translations both act like before, see the law (3.1). It is a straightforward exercise to 
verify that the two actions commute with Q. 
 

Let us now introduce an analogue of the Caley map, CF, from u(1,1) into U(1,1): 
 

CF (h) = [1 – (shs)/2][1 + (shs)/2]-1   (3.4) 
 

Contrarily to the original Caley map CD , its analogue CF is not globally defined. As it follows from (3.4), 
the determinant of [1 + (shs)/2] vanishes on a certain (two-dimensional) hyperboloid of one sheet. That is 
why there is only local pseudo-Hermitian analogue of Theorem 2 from [Le-07]. More details are provided 
below. 
 
 

4. F–represented SU(2,2) 
 
As part of the DLF-approach, consider the following matrix representation of the Lie group G = SU(2,2). It 

is conjugate to the D–representation (the latter has been originally introduced in Segal’s Chronometry; see 
[PaSe-82a], or [Le-95]). That conjugation is performed by the following four-by-four matrix W: W is the direct 
sum of -1 with a certain three by three matrix. The only non-zero entries of the latter matrix are 1s on the 
auxiliary diagonal. Clearly, W2 equals the unit matrix. 

The D–represented SU(2,2)=G (call it DG, in brief) was composed of a certain set of pseudo-unitary 
matrices. Overall, DG has been defined with the help of a distinguished diagonal matrix, diag{1,1,-1,-1}. 
Under the conjugation by W we get S= diag {1,-1,-1,1}, which determines another copy of SU(2,2) (denote it 
by FG). Clearly, an isomorphism between DG and FG is carried out (via conjugation in SL(4,C)) by the matrix 
W. 

The group FG is composed of those matrices g (with unit determinant), which satisfy 
 

g*Sg=S       (4.1) 
 

Similarly to the D–case, it is convenient to build each g of two-by-two blocks A, B, C, D. The maximal 
(essentially) compact subgroup K in D–representation consisted of block-diagonal matrices g, that is, 
B=C=0. There is an analogue of K in F-representation, call it H. Formally, H is determined by the same 
condition as K was. Recall that the world F has been defined above as the Lie group U(1,1), see below, 
equipped with a certain bi-invariant metric. 

The above matrix S is the following direct sum of two-by-two matrices: 
 

S = diag{s,-s}, 
 
where s = diag{1,-1}. Define U(1,1) as the totality of all two by two matrices satisfying 
 

z*sz=s      (4.2) 
 

Lemma (it is an analogue of Lemma 2.1.4 from [PaSe-82a]). A matrix g from SL(4,C) belongs to FG if 
and only if the following conditions hold 
 

A*sA – C*sC = s, D*sD – B*sB = s, D*sC – B*sA = 0  (4.3) 
 

Based on (4.1) straightforward proof is omitted. 
 
Let us now introduce the following FG-action on F: an element g maps a matrix z into (Az + B)(Cz + D)-1: 

 
gz = (Az + B)(Cz + D)-1     (4.4) 

 
Theorem 3. Equation (4.4) defines (formally) a left action on F=U(1,1), that is, (g’g)z = g’(gz). If the matrix 

Cz+D is non-degenerate, then gz belongs to F. 
The proof is omitted. 
 
Remark 3. It can be shown that for an arbitrarily chosen z from U(1,1), formula (4.4) is well-defined in a 

certain neighborhood of z, and for elements g from a certain neighborhood of a neutral element in FG. Such 
an action is called a local one. 

Here is an example when (4.4) is undefined. Take z with rows {21/2,1}, {1, 21/2}; take g determined by 
blocks  
 

 



A= D = , B = C = , 
cht0
01

sht0
01

 
where ch t = 21/2, sh t = –1, values of hyperbolic cosine and of hyperbolic sine. 

Theorem 4. Equation (4.4) defines a local FG-action on F = U(1,1). The subgroup H acts globally. The 
orbit of the neutral element (as well as the orbit of any other element of F) is the entire U(1,1). 

The proof is omitted. 
 
 

5. Conclusions 
 
The main finding of the article is that the tachyonic component F can be introduced in a way similar to 

how the D-component has been treated in conventional physics. It is proposed that L- and F-components of 
an object can play the role of (long wanted) hidden variables of quantum mechanics. 
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