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Abstract The DLF theory can be understood as an attempt to modify the Standard Model by flexing the Poincare 

symmetry to certain 7-dimensional symmetries. The D part of the theory is known as Segal’s Chronometry which is 

based on compact cosmos D=U(2) with the SU(2,2) fractional linear action on it. The oscillator group is viewed as a 

subgroup LG of the conformal group G=SU(2,2) and certain LG-orbits L in D are studied. We prove existence of such 

L and of such an embedding of F=U(1,1) into D, that D differs from F by a certain torus whereas D differs from L 

by a circle on that torus. In the general U(p,q) vs U(p+q) case, the Sviderskiy formula is described - as a tribute to 

the late Oleg S. Sviderskiy (July 31 1969 – March 30 2011).   

 

PACS number: 12.90.+b 

1 Introduction 

In the context of Segal’s chronometric theory it has been shown [SeVoZh-95] that exact invariance under a 7-

dimensional isometry group K of the Einstein static universe (the latter being the universal cover of the chronometric 

compact cosmos D) guarantees approximate Poincare invariance and that it is far beyond the accuracy of currently 

available devices to experimentally decide between the two types of invariance. Having this in mind, the DLF theory 

(see [Le-11a]) can be viewed as an attempt to modify the Standard Model by flexing the Poincare symmetry to three 

types of 7-dimensional symmetries (one of them being the K-symmetry).   

In terms of the DLF terminology, the current article is primarily dedicated to the L-ingredient of the theory. The 

oscillator group will be introduced below as a subgroup LG of the conformal group G=SU(2,2), whereas by L we will 

denote a certain  LG-orbit in D. The main inquiries and statements of our article are motivated by the (still pending) 

necessity to deal with L-based parallelizations (additionally to parallelizations of vector bundles introduced in 

[PaSe-82]: see the relevant discussion in [Le-11a Section 7]). In the DLF context, the oscillator Lie algebra l has 

been introduced in Section 3.3 of [Le-11a]. Our Section 2 introduces both l and (some of the) corresponding Lie 

groups.  

Part of the content of Section 3 is a tribute to the late Oleg S. Sviderskiy (July 31 1969 – March 30 2011).  

Overall, the current article provides mathematical justification to some of the claims of [Le-11a].  

2 Realizations of the oscillator group as subgroups in U(2,1) and SU(2,2) 

Following [Le-09], we now introduce the oscillator Lie algebra as the totality of all matrices 

 

[

        

  ̅     ̅

        

]                  (2.1) 

where z = x2 + ix3. Here (and below) variables x1, x2, x3, x4 are real. 
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Introduce Lie algebra u(2,1) as the totality of all 3 by 3 matrices m (complex entries allowed) which satisfy 

 

ms + sm
*
 = 0,            (2.2) 

where s a diagonal matrix with entries 1, 1, -1. 

 

Proposition 1. Each matrix (2.1) belongs to u(2,1). 

The straightforward proof is omitted. 

Remark 1. Each matrix (2.1) can be viewed as a linear combination of               Namely, 

 

   [
    
   
    

],    [
   

    
   

],    [
   
    
   

],    [
   
   
   

]   

The commutation relations are as follows: 

          ,          ,            . The last relation differs by factor 2 from the one in Section 3.3 of [Le-

11a]. The two Lie algebras are isomorphic. The following notation is used below: z=  +i  , e=    , m = z ̅    

Theorem 1. The totality of all matrices 

 

U=[

             

   ̅    ̅

              

]    (2.3) 

 

is a (closed) oscillator subgroup in U(2,1).  

 

Proof (outline). The matrix (2.3) is the product of exp (    ) and  exp n (in that order) where n is the linear 

combination of                    . This observation guarantees, already, that the totality of all matrices (2.3) is a 

group. It is helpful however to determine precise expressions for the (2.3) parameters of the product U ̃.They are 

not given here since we will only need these expressions in later study. Proposition 1 guarantees that it is a subgroup 

of U(2,1). 

Remark 2. It is clear from (2.3) that our oscillator subgroup has topology of S
1 
times R

3
. The (standard) group 

operation for its universal covering group (with the R
4 
topology) can be found on p.411 of [HiHoLa-89]. 

We now introduce oscillator Lie group as a subgroup LG in G=SU(2,2). The latter group and its fractional linear 

action on U(2)  



g(Z) = (AZ + B)(CZ + D)
-1    

  

(where an element g is determined by 22 blocks A, B, C, D) is defined in [Le-11a Section 6]. Consider the set of all 

4 by 4 matrices g of the form  

              g = U+e
-1 

                (2.4) 

(direct sum of a matrix (2.3) with the 1 by 1 matrix   e
-1

 where e =     ).  

Theorem 2. The totality LG of all matrices (2.4) is a closed oscillator subgroup in G=SU(2,2). The LG-orbit L of the 

matrix -1 under fractional linear action is all D=U(2) but a certain circle (described below). The stationary LG-

subgroup of -1 is the following set (of two elements): z=0, x1=0, exp(2ix4)=1.  

Proof.  The determinant of the (2.3) matrix U is e which is why the matrix g (2.4) is in SU(2,2). From (2.4), we form 

the following matrices: 

 

A = [
        

   ̅  
], B= [

      

  ̅  
], C= [

       

  
], D= [

        

    
]. 

 

Fractional linear action applied to an element Z from U(2) (we then take Z = -1) results in: 

 

(    )(    )   

= ([
        

   ̅  
]   [

      

  ̅  
]) ([

       

  
]   [

        

    
])

  

 

 

= (
 

         
) [

            

   ̅   
] [

   

  (         )
] 

= υ[
             

   ̅   (         )
].  

 

In other words, an element M of the orbit is 

 

υ[
             

   ̅   (         )
],      (2.5) 

 

where υ  (
 

         
). 



 

It is well-known that an arbitrary Z from U(2) can be viewed as 

[
  

  
] [

            

            

] , where | |     and   
    

    
    

   , with real variables u1, u2, u3, u4. 

Then (viewing Z as given) the equality Z = M (of two matrices) reads: 

 

[
  

  
] [

            

            

]   υ[
             

   ̅   (         )
] (2.6) 

 

Start with the equality of the first entries in the first rows: 

       
         

         
 

       
        

(    )     
   . The case u4 = 1 (which implies u1 = u2 = u3 = 0) has no solution, we will 

return to it later. Otherwise, the above is equivalent to    
       

   

(    )     
  and    

    

(    )     
  . This system is 

solved by 

    = 
   

(    )    
  and     

    
    

 

(    )    
     

We are done with the first entries of the first rows. Now we proceed with the second entries there:  

       
    

         
       (2.7) 

We write       in polar coordinates as follows:                  . Recall               . Let 

  (    )     
    

Then (2.7) is equivalent to the system: 

        (    )    (    )        (     ) , 

       (    )    (    )        (    ) . 

Since r, m, x1 are already determined (in terms of the element Z), the values of both cos(x4 –  ),  

sin(x4 –  ) are uniquely determined. 

The equality of the first entries in second rows of (2.6) is equivalent to: 

sin(x4 +  ) - icos(x4 +  ) = d(iu1 – u2)/2r υ.  

Since the right hand side is a complex number of length one, the left hand side is uniquely determined (in terms of 

the matrix Z).  

We have thus determined all four parameters of (2.5) in terms of the matrix Z. The equality of the second entries in 

second rows of (2.6) is satisfied, too. 



Overall, we have shown that all elements of U(2), which  cannot be represented by (2.5), form the circle  

                      [
  

  
] .            (2.8) 

This is the case where u4 = 1 (which implies u1 = u2 = u3 = 0, and subsequently x_1 = m = 0), and (2.6) does not 

hold.  

Regarding the stationary subgroup: based on (2.5) simple calculation finishes the proof of Theorem 2. 

Remark 3. Since this stationary subgroup is not an invariant one in LG, the oscillator group (2.4) does not induce a 

group operation on its homogeneous space L. Compare it with a different outcome in the U(1,1) case (see Remark 2 

of Section 3). 

The content of the next section is reproduced from [Le-11b]. 

3 Embedding of U(1,1) into U(2) and generalizations to higher dimensions: the 

Sviderskiy formula  

Let us start with a brief discussion of the general case. Formula 

              n = sm          (3.1a) 

sets up a linear bijection between vector spaces of Lie algebras u(p,q) and u(p+q): (3.1a) is mentioned on p.219 of 

[DuFoNo-91]. Here s is a diagonal matrix with p ones and q negative ones on the principal diagonal and u(p,q) is the 

set of all p+q by p+q matrices m which satisfy our (2.2) above, given nonnegative integers p and q. Obviously,  

       m = sn     (3.1b)  

is the formula for the inverse mapping from u(p+q) onto u(p,q).  

Formulas (3.1a, b) might be viewed as giving canonical linear correspondence between u(p,q) and u(p+q) but how 

about correspondence between Lie groups U(p,q) and U(p+q)?  

The research in this direction has been started (see [LeSv-09]) by the second author together with late Oleg S. 

Sviderskiy (31 July 1969 – 30 March 2011). As a tribute to Oleg, it is now suggested that the formula for the 

canonical correspondence between groups U(p,q) and U(p+q) be known as the Sviderskiy formula; it is presented 

below as Theorem 3.  

We first describe how U(1,1) sits in U(2). This is defined by the following function h from D=U(2): the image of a 

matrix Z = 








43

21

zz

zz
 from U(2) is the matrix V with entries  

v1 = d/z4, v2 = z2/z4, v3 = - z3/z4, v4 = 1/ z4;   (3.2) 

here d is the determinant of Z. Notice that the determinant of V  equals z1/z4.  

Proposition 2. The mapping (3.2) is only undefined for elements Z on the torus z1 =  z4 = 0 in D=U(2). The image is 

the entire F=U(1,1). In terms of Lorentzian metrics (introduced in [Le-11a] on both D and F) the mapping (3.2) is 

conformal. The tangent mapping (or the differential of h) at the neutral element of D is exactly our (3.1b).  



Here we only notice that correspondence (3.2) is similar to the one established in [Le11a Theorem 6] whereas other 

details of the proof are to be presented elsewhere.   

Remark 1. Significant part of what is discussed in this section, also makes sense in the SO(p,q) vs SO(p+q)context. 

Remark 2. Having in mind the realization (2.4) of the oscillator Lie group, the following seems to be one of the 

most natural ways to introduce FG, a subgroup of G=SU(2,2) locally isomorphic to U(1,1). In the context of [Le-11a 

Section 6], the blocks of a generic element in FG are as follows: B=C=0, A=Z, D=q where Z is from U(1,1) and q
2 

times determinant of Z is one. If to proceed similarly to how we did in the proof of the above Theorem 2, then the 

homogeneous space F inherits the group operation from FG since the stability subgroup is central in FG. Namely, 

this stability subgroup consists of scalar matrices i, -i, 1, -1 and F is isomorphic to U(1,1). 

Proposition 3 below relates the three worlds together in a more specific way than it has been done in [Le-03] and in 

[Le-11a Theorem 6]. In that Proposition 3 we view F=U(1,1) as a subset of D defined by (3.2), whereas we choose 

another L rather than the one described in Theorem 2 and Remark 3 of Section 2.  

Proposition 3. F < L < D, embeddings of manifolds. 

Proof.  Let us conjugate the oscillator subgroup (2.4)  in SU(2,2) in such a way that the resulting orbit of a certain 

matrix X has the following property: it contains all elements of U(2) with non-zero entry z4. In other words, the 

analogue of the circle (2.8) for this orbit will be contained in the torus z1 = z4 = 0.  It is easy to verify that the 

following element g0 in SU(2,2) takes the matrix  

                       X =  [
   

   
] 

into negative one: blocks B and C of g0 both vanish, whereas  

A =   [
  

  
],   D =   [

  

  
] .  The inverse of g0 is its own negative, from where it follows that - g0LG g0 is an 

appropriate subgroup conjugate to the group LG defined by (2.4). The corresponding circle (points of which do not 

belong to the orbit) is the image of (2.8) under g0: 

                                 [
  

  
]. 

Clearly, this circle is on the torus (points of that torus do not belong to F). Proposition 3 is proved. 

We now proceed with the Sviderskiy formula which defines an embedding of U(p,q) into U(p+q) as manifolds. This 

mapping is defined as a fractional linear application of a certain 2n by 2n matrix W to (all) matrices in U(p,q); here 

n=p+q.  The n by n blocks A, B, C, D of the matrix W are defined as follows:  

    A=D= 








00

0pI

 

B=C= 








qI0

00

 

where Ip (respectively, Iq) stand for the unit matrix of size p (respectively, of size q). 



Theorem 3 (the Sviderskiy formula). The fractional linear application of the above introduced matrix W is defined 

for all matrices in U(p,q), and U(p,q) is in a one-to-one correspondence with its image. The inverse mapping is also 

defined as the fractional linear transformation (by the same matrix W). 

The proof is to be presented elsewhere. 

Remark 3. The above (3.2) is a special case of the Sviderskiy formula.  
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